

BANGALORE UNIVERSITY

DEPARTMENT OF BOTANY

Jnanabharathi Campus, Bengaluru - 560 056

SYLLABUS FOR B. Sc. BOTANY (UG) V & VI SEMESTER

Under Graduate (UG) Programme

To be implemented from the academic year 2023-24

30.08.2023

Signature

R 00820/8/23

analin

r.N

Proceedings of the Board of studies in Botany (UG) meeting held on 30-08-2023 in the Department of Botany, Bangalore University, Bangalore to discuss and finalize the syllabus of V and VI Sem B.Sc., Botany (NEP) and other issues as per the agenda.

Members Present

1. Dr. H. R. Raveesha, Professor & Chairman

2. Dr. Sharanappa. P

3. Dr. Rajkumar H Garampalli

4. Dr. Usha Malini

5. Dr. Suresh Kumar. C

6. Dr. Kempegowda. M. S

7. Dr. Mamatha. N

8. Dr. Venkateshappa. S. M

: External Member

: External Member

: Member

: Member

: Member m. ^g.

: Member

: Member

(0e

Dr. H. R. Raveesha Professor & Chairman Professo & Chairman Department of Botan, Bangalore University Bangalore - 560 056.

MINUTES OF THE BoS (UG) MEETING

Chairman welcomed the members to the meeting and thereafter the agenda was taken up for discussion

- Discussed and finalized the NEP syllabus of V and VI semester B.Sc., Botany both (Theory & Practicals) question paper pattern, blue print of question paper, Formative assessment and scheme of valuation for choice based credit system of NEP Programme.
- 2. Members also discussed the titles of the papers for V & VI Semester disciplines of specific elective papers.
- 3. The overall N.E.P Module for B.Sc., Botany was discussed, finalized and accepted with modifications wherever necessary.
- 4. The proposed panel of examiners were recommended for 2023-24 examinations.
- 5. Recommendations were made for the Constitution of BoE for the academic year 2023-24
- 6. The Chairperson is authorized to change / incorporate corrections as per the direction of University.

The meeting ended with a vote of thanks by the Chairman.

Mhanjalini M.s. benno

		COURSE I	PATTERN AND SCHEME OF EXA	MIN	ATION	FOR	B.Sc. /]	B.Sc. (HON	S.) AS 1	PER N	EP (20	23-24 O	NWAR	DS)		
		1		S	UBJEC	T: BO											
		م		Irs	Hours/	Week	Exai			ern Ma <u>s/Paper</u>	x. and Min.		Durat exam (ion of hours)		Cre	dits
	er	jodi		Hours]	Theory		Practical					/ b;		
SI. No	Semester	Course Code	Title Of The Paper	Teaching I	Theory	Practical	Max.	Min.	IA	Max.	Min.	IA	Theory	Practical	Total marks/ paper	Theory	Practical
		ВОТ С9 - Т	Plant Morphology & Taxonomy	60	4		60	21	40				2 1/2		100	4	
		ВОТ С10 - р	Plant Morphology & Taxonomy	60		4				25	09	25		3	50		2
1	V	BOT C11 - T	Genetics and Plant Breeding	60	4		60	21	40				2 1/2		100	4	
		BOT C12 - p	Genetics and Plant Breeding	60		4				25	09	25		3	50		2
			SKILL ENHANCEMENT COURSE	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		BOT C13 - T	Cell Biology	60	4		60	21	40				2 1/2		100	4	
		ВОТ С14 - р	Cell Biology	60		4				25	09	25		3	50		2
2	VI	BOT C15 - T	Plant Physiology and Biochemistry	60	4		60	21	40				2 1/2		100	4	
		BOT C16 - p	Plant Physiology and Biochemistry	60		4				25	09	25		3	50		2
			SKILL ENHANCEMENT COURSE	-	-	-	-	-	-	-	-	-	-	-	-	-	-

B. Sc. Botany Programme outcomes as per NEP 2020

Discipline Core: Botany Total Credits for the Program: 186

Starting year of implementation: 2021-22

Program Outcomes:

By the end of the program the students will be able to:

(Refer to literature on outcome based education (OBE) for details on Program Outcomes)

PO1: Skill development for the proper description using botanical terms, identification, naming and classification of life forms especially plants and microbes.

PO2: Acquisition of knowledge on structure, life cycle and life processes that exist among plant and microbial diversity through certain model organism studies.

PO3: Understanding of various interactions that exist among plants and microbes; to develop thecuriosity on the dynamicity of nature.

PO4: Understanding of the major elements of variation that exist in the living world through comparative morphological and anatomical study.

PO5: Ability to explain the diversity and evolution based on the empirical evidences in morphology, anatomy, embryology, physiology, biochemistry, molecular biology and life history. **PO6**: Skill development for the collection, preservation and recording of information afterobservation and analysis- from simple illustration to molecular database development.

PO7: Making aware of the scientific and technological advancements- Information and Communication, Biotechnology and Molecular Biology for further learning and research in all branches of Botany..

PO8: Internalization of the concept of conservation and evolution through the channel of spiritof inquiry.

PO 9: To enable the graduates to prepare for national as well as international level competitive examinations like UGC-CSIR, UPSC, KPSC etc.

PO10: To enable the students for practicing the best teaching pedagogy as a biology teacherincluding the latest digital modules.

PO 11: The graduates should be knowledgeable and competent enough to appropriately deliveron aspects of global importance like climate change, SDGs, green technologies etc at the right opportunity.

PO 12: The graduate should be able to demonstrate sufficient proficiency in the handson experimental techniques for their area of specialization within biology during research and in theprofessional career.

BOTANY Curriculum B. Sc. BOTANY – V Semester Plant Morphology and Taxonomy (Theory)

Program Name	B.Sc. in BO			Semes		V			
Course Title	Plant Morp	hology and Tax	xonon	ny (Theory)					
Course Code:	DSC – BOT	-C9 - T		No. of Cred	No. of Credits 04				
Contact hours 60 Hours				Duration of SEA/Exa	im 2	2½ hours	rs		
Formative Assess	ment Marks	40	Sum	mative Assessment Marks		60			
Course Pre-requ	isite(s):				1				
Course Outcome	s (COs): After	r the successful	comp	letion of the course, the stu	Iden	t will be a	ble to:		
using dich CO3. Interpret the CO4. Classify Pla Evaluate the CO5. Recognition	 CO2. Ability to identify, classify and describe a plant in scientific terms, thereby, Identification of plant using dichotomous keys and classification of flowering plants. CO3. Interpret the rules of ICN in botanical nomenclature. CO4. Classify Plant Systematic and recognize the importance of herbarium and Virtual Herbarium, Evaluate the Important herbaria and botanical gardens. CO5. Recognition of locally available angiosperm families and plants and economically important plants 								
Conservati	on of useful p	lants from the p		the present.			(0 h.m.		
Unit I		Conte	ents				60 hrs 15 hrs		
 Morphology of Root, Stem and Leaf, their modifications for various functions. Inflorescence – types. Structure and variations of flower. Fruits–types. Floral diagram and floral formula. Introduction to Taxonomy: History, objectives, scope and relevance of Taxonomy Systems of classification: Artificial, Natural and Phylogenetic; brief account of Linnaeus, Bentham & Hooker's, Engler and Prantl's system and APG IV System (2016) - Merits and demerits of classification. Taxonomic literatures: Floras, Monograph. Revisions, Journals. Herbaria and Botanical gardens: Important herbaria and Botanical gardens of the world and India, roles of Botanical gardens, technique of herbarium preparation 									
Virtual herbariu Unit II							15 hrs		
 Plant identification: Taxonomic dichotomous keys; indented (yolked) and bracketed keys. (Brief account only). Plant descriptions: Common terminologies used for description of vegetative and reproductive parts of the following families. 									

 Study of the diagnostic features of Angiosperm families: Annonaceae, Brassicaceae, Malvaceae, Rutaceae, Fabaceae (with sub Families), Apiaceae, Cucurbitaceae, Rubiaceae, Asteraceae, Apocynaceae, Solanaceae, Lamiaceae, Euphorbiaceae, Orchidaceae, Liliaceae, Arecaceae and Poaceae. Plant Taxonomic Evidences: from palynology embryology, cytology, phytochemistry and molecular data. Field inventory. 	
Unit III	15 hrs
Taxonomic Hierarchy : Concept of taxa (family, genus, species), Categories and taxonomic hierarchy, Species concepts (biological, morphological, evolutionary). Modes of speciation. Botanical Nomenclature: Principles and rules (ICN); Latest Botanical code (Shenzen code 2010). Priof account of ranks of taxa. Type concept (Typification). Pule of priority	
- 2019), Brief account of ranks of taxa, Type concept (Typification), Rule of priority, Author citation., valid publication, rejection of names, principle of priority and its	
limitations; Names of hybrids/cultivated species.	
Unit IV	15 hrs
 Biometrics, Numerical Taxonomy; Phenetics and Cladistics: Characters; Variations; OTUs, character weighting and coding; Cluster analysis; Phenograms, cladograms (definitions and differences). Phylogenetic Systematics: Terms and concepts (primitive and advanced, homology and analogy, parallelism and convergence, monophyly, Paraphyly, polyphyly, clades, synapomorphy, symplesiomorphy, apomorphy, lineage sorting, serial homology etc.). Origin and evolution of angiosperms: Co-evolution of angiosperms and animals; Methods of illustrating evolutionary relationship (phylogenetic tree, cladogram). Molecular taxonomy: DNA sequences of chloroplast genes (rbcL) and one nuclear gene (nuclear ribosomal 18s DNA) (Brief account). 	

Pedagogy: Teaching and learning, Seminar, Assignments, etc.

Formative Assessment for Theory						
Assessment Occasion/ type	Marks					
Attendance	10					
Test (Objective type)	10					
Assignments	10					
Seminar	10					
Total	40 Marks					
Formative Assessment as per guideline	es are compulsory					

B. Sc. BOTANY – V Semester Plant Morphology and Taxonomy (Practical)

Program					
Name	B.Sc. in	n BOTANY	Semester	V	
Course Title	Plant N	Aorphology and Taxonomy (Practical Credits	02	
Course Code	Course Code DSC – BOT - C10 - P			Contact Hours	4 Hours per week
Formative Asse	essment	25 Marks	Summ	ative Assessment	25 Marks

Practical Content

1. Study of root, stem and leaf structure and modifications. Study of inflorescence types. Study of flower and its parts, Study of fruits. Floral diagram and floral formula. **04 hrs**

2. Study of families mentioned in theory with at least two examples for each family and make suitable diagrams, describe them in technical terms (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hooker's system of classification) and identify up to species using the flora. **26 hrs**

3. Construction of plant phylogenetic trees using various loci (*atp*B, rbcL, ITS, trnL etc) with various phylogenetic methods (Neibour Joining, Maximum Likelihood etc)(Demonstration). **06 hrs**

4. Identify plants/plant products of economic importance belonging to the families mentioned in the syllabus; with binomial, family and morphology of useful parts - Cotton, Red gram, Green gram, Horse gram, Black gram, Bengal gram, Indigo, Brinjal, Tomato, Chilly, Tamarind, Bitter gourd, *Luffa, Asafoetida*, Cumin, Coriander, Coffee, Rubber, *Tapioca, Ricinus*, Turmeric, Coir, Arecanut, Rice, Wheat, Ragi, Sugarcane *Annona muricata Catharanthus roseus*, *Rauvolfia serpentaina, Justicia adhatoda, Vitex nigundo* and *Leucas aspera*. **16 hrs**

5. Field visit: Local or outside area/ Botanical garden/ tribal settlements minimum 3 to 5 days.

6. **Submission:** Record book, Tour report and Herbarium (Preparation of 10 properly identified herbarium specimens; mounting of a properly dried and pressed specimen of any common plants from your locality with herbarium label).

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)		Program Outcomes (POs)										
		2	3	4	5	6	7	8	9	10	11	12
CO1	1	2	1	1	1	2		1	2	1	1	2
CO2	1	1	2	2	1	2		2	2	1	2	1
CO3	3	1	1	2		1	3	1		1	2	1
CO4	2	2		1	2	2			2	1	1	2
CO5		1	1	2	2	3			2	1	2	2

Formative Assessment for Practical			
Assessment Occasion/ type	Marks		
Attendance	05		
Test	05		
Field visit (3 to 5 days)	05		
Submission (Tour report and Herbarium)	10		
Total	25 Marks		
Formative Assessment as non quideline			

Formative Assessment as per guidelines are compulsory

References

- 1. Baker. H.G. 1970. Plant and Civilization, Wadsworth Publishing Company.
- 2. Colton C.M. 1997. Ethnobotany Principles and applications. John Wiley and sons Chichester
- 3. Cotton, C.M. 1996. Ethnobotany Principles and Applications. Wiley and Sons
- 4. Datta S C. 1988. Systematic Botany, 4th Ed, Wiley Estern Ltd., New Delhi.
- 5. Eames A. J. 2008. Morphology of Angiosperms Mc Graw Hill, New York.
- 6. Hall, B.G. 2011. *Phylogenetic Trees Made Easy: A How-To Manual*. Sinauer Associates, Inc. USA
- 7. Heywood, 1999. *Plant taxonomy* and Biosystematics, Edward Arnold London.
- 8. Jeffrey C .J. and A. Churchil *An introduction to taxonomy* London.
- 9. Jeffrey, C. (1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge
- 10. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F., Donogue, M.J., 2002. *Plant Systematics: A Phylogenetic approach*, 2nd edition. Sinauer Associates, Inc., USA.
- 11. Lawrence, G.H.M. 2012. Taxonomy of Vascular Plants Oxford & I B H, New Delhi.
- 12. Manilal, K.S. and M.S. Muktesh Kumar 1998. *A Handbook on Taxonomy Training*. DST, New Delhi.
- 13. Manilal, K.S. and A.K. Pandey, 1996. *Taxonomy and Plant Conservation*. C.B.S. Publishers & Distributors, New Delhi.
- 14. Manilal, K.S. 2003. *Van Rheede'sHortusMalabaricus. English Edition*, with Annotations andModern Botanical Nomenclature. (12 Vols.) University of Kerala, Trivandrum.
- 15. Naik V.N., Taxonomy of Angiosperms, 1991. Tata Mcgraw-Hill Pub. Co. Ltd., New Delhi.

16. Pandey, S. N, and S.P. Misra, 2008. Taxonomy of Angiosperms- Ane Books India, New Delhi.

17. Radford A B, W C Dickison, J M Massey & C R Bell, *Vascular Plant Systematics*, 1974, Harper & Row Publishers, New York.

18. Singh G. 2012. Plant systematics: Theory and Practice. Oxford and IBH, Pvt. Ltd., New Delhi.

19. Singh V. and Jain, 2015. Taxonomy of Angiosperms - Rastogi Publications, Meerut.

20. Sivarajan V. V. 1991. Introduction to Principles of taxonomy - Oxford &I B H New Delhi.

GENERAL PATTERN OF THEORY QUESTION PAPER

(60 marks for semester end Examination with $2\frac{1}{2}$ hrs duration)

1. Question number 1-06 carries 2 marks each. Answer any 05 questions:	10 marks
Part-B	
2. Question number 07- 11 carries 05 Marks each. Answer any 04 questions:	20 marks
Part-C	
3. Question number 12-15 carries 10 Marks each. Answer any 03 questions :	30 marks

(Minimum 1 question from each unit and 10 marks question may have sub-questions for 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Max. Marks: 25

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.

SCHEME OF PRACTICAL EXAMINATION

(Distribution of marks): 25 marks for the Semester end examination

Time:	3Hours

1. Identify, classify and describe the specimen A & B taxonomically	6 Marks
2. Identify the given specimen C with the help of Key using Flora	4 Marks
3. Draw the floral diagram and write floral formula of the given specimen D	2 Marks
4. Identification of Specimen/slides E, F and G	6 Marks
5. Viva Voce	2 Marks
6. Submission (Record)	5 Marks

General instructions:

- Q1. Give specimen from Dicotyledons (A) and Monocotyledons (B)
- Q2. Give specimen from family they studied (C)
- Q3. Give specimen from family they studied (D)
- Q4. Specimen /Slides/ materials from Root/Stem/ Leaf/ Inflorescence (E), Flower/Fruit (F) and Economic importance (G)
- Q5. Viva voce
- Q6. Submission (Journal/ Record + Study Tour Report)

Note: Same Scheme may be used for IA (Formative Assessment) examination

B. Sc. BOTANY – V Semester Genetics and Plant Breeding (Theory)

Program Name	B.Sc. in BOTANY	Semester	V					
Course Title	Genetics and Plant Breeding (Theory)							
Course Code:	DSC – BOT-C11 - T	No. of Credits	04					
Contact hours	60 Hours	Duration of SEA/Exam	2 ¹ / ₂ hours					
Formative Asse	ssment Marks 40	Summative Assessment Marks	60					

Course Pre-requisite (s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to: CO1.Understanding the basics of genetics and plant breeding

CO2.Abilitytoidentify, calculate and describe crossing over, allelic generations and frequencies of recombination.

CO3.Interpret heresults of mating and pollinations.

CO4.ClassifyPlantpollination methods

CO5.Recognition of modes of inheritance of traits/ phenotypes and Phenotype-genotype correlation.

Contents	60 Hrs
Unit I	15 hrs
 Mendelian genetics and its extension Mendelism: History; Principles of inheritance; Chromosome theory of inheritance, Autosomes and sex chromosomes, Probability and pedigree analysis, Incomplete dominance and codominance, Multiple alleles, Lethal alleles, Epistasis, Pleiotropy, Recessive and Dominant traits, Penetrance and Expressivity, Numericals. Extrachromosomal Inheritance, Chloroplast mutation, Variegation in Four o'clock plant, Mitochondrial mutations in yeast. 	
Unit II	15 hrs
 Linkage, crossing over and chromosome mapping: Cytological basis of crossing over, Recombination frequency, two factor and three factor crosses, Interference and coincidence, Numerical based on gene mapping, Sex linkage. Variation in chromosome number and structure: Gene mutations: Types of mutations; Molecular basis of Mutations; Mutagens – physical and chemical (Base analogs, deaminating, alkylating and intercalating agents). Detection of mutations: CLB method, Role of Transposons in mutation, DNA repair mechanisms. Fine structure of gene Population Genetics: Allele frequencies, Genotype frequencies, Hardy-Weinberg Law, 	

role of natural selection, mutation.	
Evolutionary Genetics: Genetic drift, Genetic variation and Speciation.	
Unit III	15 hrs
 Plant Breeding: Introduction and objectives. Breeding systems: modes of reproduction in crop plants. Important achievements and undesirable consequences of plant breeding. Methods of crop improvement. Introduction, Centres of origin and domestication of crop plants, plant genetic resources, Acclimatization. Selection methods: Self-pollinating and cross-pollinating plants and types of vegetative 	
propagation in plants.	
Unit IV	15 hrs
Hybridization: self, cross and vegetative propagation in plants – Procedure, advantages and limitations.	
Quantitative inheritance:	
Quantitative inheritance: Concept, mechanism, examples of inheritance of Kernel colour in wheat, Monogenic vs	
Concept, mechanism, examples of inheritance of Kernel colour in wheat, Monogenic vs	
Concept, mechanism, examples of inheritance of Kernel colour in wheat, Monogenic vs Polygenic inheritance. Inbreeding depression and heterosis: History, genetic basis of inbreeding depression and	

Formative Assessment for Theory				
Assessment Occasion/type	Marks			
Attendance	10			
Test (Objective type)	10			
Assignments	10			
Seminar	10			
Total	40 Marks			
Formative Assessment as per guidelines are compulsory				

B. Sc. BOTANY – V Semester Genetics and Plant Breeding (Practical)

Program Name	B.Sc. in BOTANY	Semester	V
Course Title	Genetics and Plant Breeding (Practical)	Practical Credits	02
Course Code	DSC – BOT – C12 - P	Contact Hours	4 Hours per week
Formative Assessment	25 Marks	Summative Assessment	25 Marks
		•	

Practical Content

Practical: Plant breeding:

- 1. Reproductive biology, self and cross pollinated plants; vegetative propagation
- 2. Hybridization: Emasculation, bagging, pollination and production of hybrids and pollen fertility
- 3. Origin, distribution and centres of diversity of crop plants: Wheat, Sorghum, Rice, Chilly Sugarcane, Cotton, Potato, coffee, Sunflower and groundnut

Practical: Genetics

- 1. Mendel's laws through seed ratios. Laboratory exercises in probability and chi-square.
- 2. Chromosome mapping using point test cross data.

Pedigree analysis for dominant and recessive autosomal and sex-linked traits.

- 3. Incomplete dominance and gene interaction through seed ratios (9:7, 9:6:1, 13:3, 15:1, 12:3:1, 9:3:4).
- 4. Study of aneuploidy: Down's, Klinefelter's and Turner's syndromes.
- 5. Photographs/Permanent Slides showing Translocation Ring, Laggards and Inversion Bridge.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program	Program Outcomes (POs)											
Outcomes (POs)		2	3	4	5	6	7	8	9	10	11	12
CO1		1		2	1		2	1				2
CO2	2	2		2	1			2	2	1		2
CO3	1	2		2	2		2	1				2
CO4			2		2		3					2
CO5	1	2		2	2		1		2	1		2

	Formative Assessment for Practical		
	Assessment Occasion/type	Marks	
Attendance		05	
Test		05	
Field visit		05	
Submission (project report on hybridization)		10	
	Total	25Marks	
Formative Assessment as per guidelines are compulsory			

Refe	rences
1	Acquaah, G. 2007. Principles of Plant Genetics &Breeding.NewJearsey, U.S.: Blackwell Publishing.
2	Singh, B.D. 2005. Plant Breeding: Principles and Methods, 7th edition. New Delhi, Delhi: Kalyani Publishers.
3	Chaudhari, H.K. 1984. Elementary Principles of Plant Breeding, 2nd edition. New Delhi, Delhi: Oxford – IBH.
4	Gardner, E.J., Simmons, M.J., Snustad, D.P. 1991. Principles of Genetics, 8th edition. New Delhi, Delhi: John Wiley & sons
5	Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. 2010. Introduction to Genetic Analysis, 10th
	Edition. New York, NY: W.H. Freeman and Co.
6	Klug, W.S., Cummings, M.R., Spencer, C.A. 2012. Concepts of Genetics, 10th edition. San Francisco, California: Benjamin Cummings
7	Raven, F.H., Evert, R. F., Eichhorn, S.E. 1992. Biology of Plants. New York, NY: W.H. Freeman and Co.
8	Welsh, J. R. 1981. Fundamentals of Plant Genetics and Breeding. John Wiley and Sons, New York.
9	Poehlman, J.M. 1987. Breeding Field Crops, 3rd Ed. AVI Publishing Co. Inc., Westport, Connecticut
10	Chopra, V.L. 2000. Plant Breeding: Theory and Practice 2nd Ed. Oxford & IBH, New Delhi.

GENERAL PATTERN OF THEORY QUESTION PAPER

(60 marks for semester end Examination with 2 hrs duration)

Part-A

1. Question number 1-06 carries 2 marks each. Answer any 05 questions:	10 marks
Part-B	
2. Question number 07- 11 carries 05 Marks each. Answer any 04 questions:	20 marks
Part-C	
3. Question number 12-15 carries 10 Marks each. Answer any 03 questions :	30 marks

(Minimum 1 question from each unit and 10 marks question may have sub-questions for 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.

SCHEME OF PRACTICAL EXAMINATION

(Distribution of marks): 25 marks for the Semester end examination

Time: 3 Hrs	Max. Marks: 25
-------------	----------------

1. Perform the emasculation / pollen viability / fertility of the given sample \mathbf{A}	5 Marks
2. Solve the given genetic problem B	4 Marks
3. Identification of Specimen/slides/ Photographs C, D and E	6 Marks
4. Viva Voce	5 Marks
5. Submission (Journal / Record)	5 Marks

General instructions:

- Q1 Material Cassia/ Hibiscus/ Catharanthus roseus etc (A)
- Q2. Genetic problems (B)
- Q3. Down's, Klinefelter's and Turner's syndromes, Translocation Ring, Laggards and Inversion Bridge (C, D and E)
- Q4. Viva voce
- Q5. Submission (Journal/ Record)

Note: Same Scheme may be used for IA (Formative Assessment) examination

B. Sc. BOTANY – VI Semester CELL BIOLOGY (THEORY)

Program Name	B.Sc. in BOT	ANY	Semester	VI
Course Title	Cell Biolog	gy (Theory)		
Course Code:	DSC-BOT -	С13-Т	No. of Credits	04
Contact hours	60 Hours		Duration of SEA/Exam	2 ¹ / ₂ hours
Formative Asses	sment Marks	40	Summative Assessment Marks	60

Course Pre-requisite (s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to:. CO1. Understanding of Cell metabolism, chemical composition, physiochemical and functional organization of organelle

CO2. Contemporary approaches in modern cell and molecular biology.

CO3.To study the organization of cell, cell organelles and biomolecules (i.e protein, carbohydrate, lipid and nucleic acid)

CO4. To gain knowledge on the activities in which the diverse macro molecules and microscopic structures inhabiting the cellular world of life are engaged.

CO5.To understand the various metabolic processes such as respiration, photosynthesis etc. which are important for life.

Contents	60 Hrs
Unit I	15 hrs
Introduction, discovery, chemical nature, structure and replication of genetic material, genetic code, non-genetic RNA, Biosynthesis of proteins Nucleosome model and Giant chromosomes salivary gland and Lampbrush chromosomes. Regulation of gene action in	
prokaryotes (Lac and tryptophan-operon). Gene regulation in eukaryotes PCD: Biology and elementary knowledge of development and causes of cancer.	
Unit II	15 hrs
Cell wall, distribution, chemical composition, functions and variations in prokaryotic and eukaryotic cells (primary and secondary wall), Glycocalyx, Cell-cell interactions/ Junctions, pit connections.	
Phases of eukaryotic cell cycle, mitosis and meiosis; Regulation of cell cycle- checkpoints, role of	
protein kinases.	
Unit III	15 hrs
Structure and functions, active and passive transport, proton pumps associated (Na-K, Ca-calmodulin etc. and their distribution), phagocytosis, pinocytosis, exocytosis. Structural organization, function, marker enzymes of the organelles, biogenesis of mitochondria and	
chloroplasts, brief account of transport in mitochondria and chloroplasts (Tim/Tom; Tic/Toc) and semiautonomous nature of mitochondria and chloroplast.	
Unit IV	15 hrs
Nuclear envelope, structure of nuclear pore complex, nuclear lamina, transport across nuclear membrane, Nucleolus, rRNA processing.	
Endoplasmic Reticulum : Structure, targeting and insertion of proteins in the ER, protein folding, processing; Smooth ER and lipid synthesis, export of proteins and lipids.	
Golgi Apparatus: organization, protein glycosylation, protein sorting and export from Golgi Apparatus; Lysosomes.	

Formative Assessment for Theory									
Assessment Occasion/type	Marks								
Attendance	10								
Test (Objective type)	10								
Assignments	10								
Seminar	10								
Total	40 Marks								
Formative Assessment as per guidelines are	compulsory								

B. Sc. BOTANY – VI Semester CELL BIOLOGY (Practical)

Course Title	Cell Bi	ology (Practical)	Practical Credits	02	
Course Code	DSC-E	80T - C14-P		Contact Hours	4 Hours per week
Formative Asse	ssment	25Marks	Summative A	Assessment	25 Marks
		Practical C	Content		
1. Study of pla	int cell str	ucture with the help of e	pidermal peel mount of	Onion/ Rhoeo/ Crinur	n.
2. Study of ce	ll and its o	rganelles with the help o	of electron micrographs.		
3. Measureme	nt of lengt	h and breadth of plant co	ell using micrometry.		
4. Study differ	ent stages	of mitosis and meiosis ((Onion/ Rhoeo/ Crinum)		
5. Study of Ka	ryotype u	sing camera-lucida / cha	rt.		
6. Isolation of	cell organ	elle – Chloroplast.			

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program		Program Outcomes (POs)										
Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
CO1			2	1			3	1				2
CO2	2	1	2		1				3			2
CO3	2		1		2				1			1
CO4			2		2		1					3
CO5									2	1	2	3

Pedagogy: Teaching and learning, conducting experiments, discussion, interaction, case studies, field visits, etc.

Formative Assessment for Practical								
	Assessment Occasion/type	Marks						
Attendance		05						
Test		05						
Assignments		05						
Submission (Submission of 5 permanent	t slides)	10						
	Total	25Marks						
Formative Assessment as per guidelines are compulsory								

Refe	erences
1	Cooper, G.M., Hausman, R.E. 2009. The Cell: A Molecular Approach, 5th edition. Washington, D.C.:
	ASM Press & Sunderland, Sinauer Associates, MA
2	Karp, G. 2010. Cell Biology, 6th edition. New Jersey, U.S.A.: John Wiley & Sons.
3	De Robertis, E. D. P. and De Robertis R. E. 2009. Cell and Molecular Biology, 8th edition. Lippincott
	Williams and Wilkins, Philadelphia.
4	Becker W. M., Kleinsmith L.J. and Bertni G. P. 2009. The World of the Cell. 7th edition. Pearson
	Benjamin Cummings Publishing, San Francisco.
5	Reven, F.H., Evert, R.F., Eichhorn, S.E. 1992. Biology of Plants. New York, NY: W.H. Freeman and
	Company
6	Alberts, B., Bray, D., Hopkin, K., Johnson, A. D., Lewis, J., Raff, M., Roberts, K., & Walter, P. 2013.
	Essential cell biology (4th ed.). Garland Publishing.
7	Raven, F.H., Evert, R. F., Eichhorn, S.E. 1992. Biology of Plants. New York, NY: W.H. Freeman and Co.
8	Verma, P. S. 2004. Cell Biology, Genetics, Molecular Biology: Evolution and Ecology. India: S. Chand
	Limited.

GENERAL PATTERN OF THEORY QUESTION PAPER

(60 marks for semester end Examination with 2 hrs duration)

Р	я	r	t-	A	١

1. Question number 1-06 carries 2 marks each. Answer any 05 questions: 10 marks

Part-B

4. Question number 07-11 carries 05 Marks each. Answer any 04 questions: 20 marks

Part-C

3. Question number 12-15 carries 10 Marks each. Answer any 03 questions : 30 marks

(Minimum 1 question from each unit and 10 marks question may have sub-questions for 7+3 or 6+4 or 5+5 if necessary)

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.

SCHEME OF PRACTICAL EXAMINATION

(Distribution of marks): 25 marks for the Semester end examination

CELL BIOLOGY

Time: 03 hrs

1. Preparation of squash/ smear of material A, identify, Sketch and label the any two stages with reasons

- 2. Find out cell length and breadth of the given material using micrometry
- 3. Identify the slides C & D
- 4. Viva-voce
- 5. Submission (Journal/ Record + 5 slides)

General instructions:

- Q1. Give specimen from Onion/ Rhoeo/ Crinum plant (A)
- Q2. Give specimen from Onion/ Rhoeo leaf (B)
- Q3. Give slide from mitosis (C) meiosis (D)
- Q4. Viva-voce
- Q5. Submission (Journal/ Record + 5 slides)

Note: Same Scheme may be used for IA (Formative Assessment) examination

Total: 60 Marks

Max. Marks: 25

06 marks

05marks

04 marks 05 marks

05 marks

B. Sc. BOTANY – VI Semester PLANT PHYSIOLOGY AND PLANT BIOCHEMISTRY (THEORY)

Program Name	B.Sc. BOTANY	Semester	VI
Course Title	Plant Physiology	and Plant Biochemistry (Th	eory)
Course Code:	BOT C15-T	No. of Credits	04
Contact hours	60 Hours	Duration of Exam	2 ¹ / ₂ hours
Formative Assessment	40	Summative Assessment Marks	60
Marks			

Course Pre-requisite (s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to: CO1. Importance of water and the mechanism of transport.

CO2. To understand biosynthesis and breakdown of biomolecules.

CO3. Role of plant hormones in plant development and about secondary metabolites.

CO4. Preliminary understanding of the basic functions and metabolism in a plant body.

CO5. To understand the importance of nutrients in plant metabolism and crop yield.

Contents	60 hrs
UNIT I	15 hrs
 Plant water relations: Importance of Water as a solvent, Diffusion, osmosis, imbibition, osmotic pressure, osmotic potential, turgor pressure, wall pressure, water potential and its components. Mechanism of water absorption, Factors affecting water absorption. Transpiration. Types and process, Mechanism of guard cell movement, K⁺ ion mechanism, Antitranspirants. Mechanism of ascent of sap: Vital and physical force theories. Phloem Transport: Transport of organic solutes. Path of transport, vein loading and unloading. Transcellular hypothesis, mass flow hypothesis. Mineral nutrition: Micro and macro nutrients - their importance and deficiency symptoms. 	
UNIT II	15 hrs
 Photosynthesis: Photosynthetic Pigments (Chl a, b, xanthophylls, carotene); Photosystem I and II, reaction center, antenna molecules; Electron transport and mechanism of ATP synthesis; C3, C4 and CAM pathways of carbon fixation; Photorespiration. Respiration: Glycolysis, anaerobic respiration, TCA cycle; Oxidative phosphorylation, Oxidative Pentose Phosphate Pathway. 	
Nitrogen metabolism: Biological nitrogen fixation: Nitrate and ammonia assimilation.	

UNIT III	15 hrs					
Plant growth regulators: Definition and classification, site of synthesis, biosynthesis						
pathway and metabolism and influence on plant growth development - Auxins,						
Gibberellins, cytokinins, ABA and ethylene.						
Synthetic growth regulators: Classification, their effect on plant growth and						
development. Practical utility in agriculture and horticulture.						
Sensory Photobiology: Biological clocks, photoperiodism, function & structure of						
phytochromes, phototropin & cryptochromes.						
Senescence and Aging.						
Plant Movements: Spontaneous (Autonomic) and Induced (Paratonic) movements.						
UNIT IV	15 hrs					
UNIT IV Biomolecules:	15 hrs					
	15 hrs					
Biomolecules:	15 hrs					
Biomolecules: Classification and functions of Carbohydrates.						
Biomolecules: Classification and functions of Carbohydrates. Enzymes: Classification, kinetics and mechanism of action.						
Biomolecules: Classification and functions of Carbohydrates. Enzymes: Classification, kinetics and mechanism of action. Proteins and amino acids : Classification, structure - primary, secondary, tertiary and						
Biomolecules: Classification and functions of Carbohydrates. Enzymes: Classification, kinetics and mechanism of action. Proteins and amino acids : Classification, structure - primary, secondary, tertiary and quaternary. Classification of Amino acids.						
 Biomolecules: Classification and functions of Carbohydrates. Enzymes: Classification, kinetics and mechanism of action. Proteins and amino acids: Classification, structure - primary, secondary, tertiary and quaternary. Classification of Amino acids. Vitamins: Classification, distribution, structure, production, function. Lipids: Classification, structure, function and biosynthesis of fatty acids. 						
 Biomolecules: Classification and functions of Carbohydrates. Enzymes: Classification, kinetics and mechanism of action. Proteins and amino acids: Classification, structure - primary, secondary, tertiary and quaternary. Classification of Amino acids. Vitamins: Classification, distribution, structure, production, function. 						

Assessment	Marks					
Attendance	10 Marks					
Test	10 Marks					
Seminar	10 Marks					
Assignment	10 Marks					
Total	40 Marks					
Formative Assessment as per guidelines are compulsory						

B. Sc. BOTANY – VI Semester PLANT PHYSIOLOGY AND PLANT BIOCHEMISTRY (Practical)

Course Title	Plant P	hysiology and Biochemistry	Practical Credits	2						
Course Code	BOT C	16-P		Contact Hours	4 Hours					
Formative Asse	essment	25 Marks	Summative A	Assessment	25 Marks					
Practical Content										
1. Experiment to demonstrate the phenomenon of exosmosis and endosmosis.										
2. To determine	e the osm	otic pressure of the cell sap by	plasmolytic n	nethod. (Major)						
3. To demonstra	ate root p	ressure / transpiration pull in p	olants.							
4. To compare t	he rate o	f transpiration from the two su	rfaces of leaf b	by cobalt chloride	paper method					
5. To demonstr	ate that o	xygen is liberated in the proce	ss of photosyn	thesis.						
6. Separation of	f photosy	nthetic pigments by paper chro	omatography a	nd measure their F	Rf values					
(Major)										
7. Estimation o	f total ch	lorophyll content by Arnon me	ethod. (Major)							
8. To isolate an	d identif	y the amino acids from a mixtu	ire using paper	chromatography.	(Major)					
9. To Study of Phototrophism.										
10. Qualitative test for Starch, Protein, Reducing Sugars and Lipids.										
11. Estimation	of TAN (Titratbale acid Number) from	<i>Bryophllum</i> le	aves/ <i>Aloe vera</i> . (N	lajor)					

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)	Program Outcomes (POs)											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1			1	2			1	1				2
CO2	1		2		1				2			
CO3	2		1		2				3			
CO4			2		2		3					
CO5									2	1	2	2

Formative Assessment for Practical		
Assessment	Marks	
Attendance	10 Marks	
Test	10 Marks	
Project report / Industrial visit	05 Marks	
Total	25 Marks	
Formative Assessment as per guidelines are compulsory		

REFERENCES

- 1. Fundamentals of Biochemistry 2nd Ed, John Wiley and Sons Inc. Wilson, K. and Walker, J. 1994.
- 2. JainV K, 2008. Fundamentals of Plant Physiology.S Chand and Co.
- 3. Kochhar P L, Krishnamoorthy H N. Plant Physiology. Atmaram and sons, Delhi.
- 4. Kumar and Purohit. 2002. Plant Physiology: Fundementals and Applications. Agrobotanical Publishers.
- 5. Malik CP, 2002. Plant Physiology. Kalyani publishers.
- 6. Mukherjii S, Ghosh AK, 2005. Plant Physiology. New Central Book Agency, Culcutta.
- 7. Noggle GR, Fritz GJ, 1983. Introductory Plant Physiology. Prentice Hall of India.
- 8. Pandey SN, Sinha BK, 2006. Plant physiology. Vikas Publishing House, New Delhi.
- 9. Salisbury F B, Ross C W, 1992. Plant Physiology. CBS publishers and Distributers, New Delhi.
- 10. Sinha A K, 2004. Modern Plant Physilogy. Narosa publishing House, New Delhi.
- 11. Srivastava H S, 2004. Plant physiology and Biochemistry. Rasthogi publications.
- 12. Verma V, 2007. Text Book of Plant Physiology. Ane Books Pvt. Ltd.

GENERAL PATTERN OF THEORY QUESTION PAPER

(60 marks for semester end Examination with 2¹/₂ hrs duration)

Part-A

1. Question number 1-06 carries 2 marks each. Answer any 05 questions:	10 marks
Part-B	
11. Question number 07-11 carries 05 Marks each. Answer any 04 questions:	20 marks
Part-C	
3. Question number 12-15 carries 10 Marks each. Answer any 03 questions :	30 marks
(Minimum 1 question from each unit and 10 marks question may have sub-questions	for $7+3$ or $6+4$ or

(Minimum 1 question from each unit and 10 marks question may have sub-questions for 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.

SCHEME OF PRACTICAL EXAMINATION PLANT PHYSIOLOGY AND PLANT BIOCHEMISTRY

Time: 03 Hours

Max. Marks: 25

1.	Conduct Major Experiment A	06 marks
2.	Comment on minor Experiments B & C	06 marks
3.	Micro Chemical test D	03 marks
4.	Viva-voce	05 marks
5.	Practical Record	05 marks

General Instructions:

- Q1. Osmotic potential/paper chromatographic separation of pigments (A)
- Q2. $CoCl_2/O_2$ evolution/Root pressure/transpiration pull experiments (**B & C**)
- Q3. Qualitative tests for Starch, Protein, Reducing Sugars and Lipids (D)
- Q4. Viva-voce
- Q5. Practical record

Internship for Graduate Programme (As Per UGC & AICTE)

Course title	Internship Discipline specific
No of contact hours	90
No credits	2
Method of evaluation	Presentations/Report submission/Activity etc.,

- ♦ Internship shall be Discipline Specific of 90 hours (2 credits) with a duration 4-6 weeks.
- Internship may be full-time/part-time (full-time during semester holidays and part-time in the academic session)
- Internship mentor/supervisor shall avail work allotment during 6th semester for a maximum of 20 hours.
- The student should submit the final internship report (90 hours of Internship) to the mentor for completion of the internship.
- The detailed guidelines and formats shall be formulated by the universities separately as prescribed in accordance to UGC and AICTE guidelines.